65,509 research outputs found

    Development of a novel virtual coordinate measuring machine

    Get PDF
    Existing VCMMs (virtual coordinate measuring machine) have been mainly developed to either simulate the measurement process hence enabling the off-line programming, or to perform error analysis and uncertainty evaluation. Their capability and performance could be greatly improved if there is a complete solution to cover the whole process and provide an integrated environment. The aim of this study is to develop such a VCMM that not only supports measurement process simulation, but also performs uncertainty evaluation. It makes use of virtual reality techniques to provide an accurate model of a physical CMM, together with uncertainty evaluation. An interface is also provided to communicate with CMM controller, allowing the measuring programs generated and simulated in the VCMM to be executed or tested on the physical CMM afterwards. This paper discusses the proposal of a novel VCMM design and the preliminary results

    Detection of Striped Superconductors Using Magnetic Field Modulated Josephson Effect

    Full text link
    In a very interesting recent Letter\cite{berg}, the authors suggested that a novel form of superconducting state is realized in La2x_{2-x}Bax_xCuO4_4 with xx close to 1/8. This suggestion was based on experiments\cite{li} on this compound which found predominantly two-dimensional (2D) characters of the superconducting state, with extremely weak interplane coupling. Later this specific form of superconducting state was termed striped superconductors\cite{berg08}. The purpose of this note is to point out that the suggested form\cite{berg} of the superconducting order parameter can be detected directly using magnetic field modulated Josephson effect.Comment: Expanded version as appeared in prin

    A novel approach for the assessment of morphological evolution based on observed water levels in tide-dominated estuaries

    Get PDF
    Assessing the impacts of both natural (e.g., tidal forcing from the ocean) and human-induced changes (e.g., dredging for navigation, land reclamation) on estuarine morphology is particularly important for the protection and management of the estuarine environment. In this study, a novel analytical approach is proposed for the assessment of estuarine morphological evolution in terms of tidally averaged depth on the basis of the observed water levels along the estuary. The key lies in deriving a relationship between wave celerity and tidal damping or amplification. For given observed water levels at two gauging stations, it is possible to have a first estimation of both wave celerity (distance divided by tidal travelling time) and tidal damping or amplification rate (tidal range difference divided by distance), which can then be used to predict the morphological changes via an inverse analytical model for tidal hydrodynamics. The proposed method is applied to the Lingdingyang Bay of the Pearl River Estuary, located on the southern coast of China, to analyse the historical development of the tidal hydrodynamics and morphological evolution. The analytical results show surprisingly good correspondence with observed water depth and volume in this system. The merit of the proposed method is that it provides a simple approach for understanding the decadal evolution of the estuarine morphology through the use of observed water levels, which are usually available and can be easily measured.National Key R&D of China (Grant No. 2016YFC0402601), National Natural Science Foundation of China (Grant No. 51979296, 51709287, 41706088, 41476073), Fundamental Research Funds for the Central Universities (No.18lgpy29) and from the Water Resource Science and Technology Innovation Program of Guangdong Province (Grant No. 2016-20, 2016-21). The work of the second author was supported by FCT research contracts IF/00661/2014/CP1234.info:eu-repo/semantics/submittedVersio

    Axion Dark Matter and Cosmological Parameters

    Full text link
    We observe that photon cooling after big bang nucleosynthesis (BBN) but before recombination can remove the conflict between the observed and theoretically predicted value of the primordial abundance of 7^7Li. Such cooling is ordinarily difficult to achieve. However, the recent realization that dark matter axions form a Bose-Einstein condensate (BEC) provides a possible mechanism, because the much colder axions may reach thermal contact with the photons. This proposal predicts a high effective number of neutrinos as measured by the cosmic microwave anisotropy spectrum.Comment: 4 pages, one figure. Version to appear in Phys. Rev. Lett., incorporating useful comments by the referees and emphasizing that photon cooling by axion BEC is a possibility, not a certaint

    Detection of a Compact Nuclear Radio Source in the Local Group Elliptical Galaxy M32

    Full text link
    The Local Group compact elliptical galaxy M32 hosts one of the nearest candidate super-massive black holes (SMBHs), which has a previously suggested X-ray counterpart. Based on sensitive observations taken with the {\it Karl G. Jansky} Very Large Array (VLA), we detect for the first time a compact radio source coincident with the nucleus of M32, which exhibits an integrated flux density of \sim47.3±6.147.3\pm6.1 μ\muJy at 6.6 GHz. We discuss several possibilities for the nature of this source, favoring an origin of the long-sought radio emission from the central SMBH, for which we also revisit the X-ray properties based on recently acquired {\sl Chandra} and {\sl XMM-Newton} data. Our VLA observations also discover radio emission from three previously known optical planetary nebulae in the inner region of M32.Comment: 13 pages, 2 figures, accepted by ApJ Letter

    Scalable Text and Link Analysis with Mixed-Topic Link Models

    Full text link
    Many data sets contain rich information about objects, as well as pairwise relations between them. For instance, in networks of websites, scientific papers, and other documents, each node has content consisting of a collection of words, as well as hyperlinks or citations to other nodes. In order to perform inference on such data sets, and make predictions and recommendations, it is useful to have models that are able to capture the processes which generate the text at each node and the links between them. In this paper, we combine classic ideas in topic modeling with a variant of the mixed-membership block model recently developed in the statistical physics community. The resulting model has the advantage that its parameters, including the mixture of topics of each document and the resulting overlapping communities, can be inferred with a simple and scalable expectation-maximization algorithm. We test our model on three data sets, performing unsupervised topic classification and link prediction. For both tasks, our model outperforms several existing state-of-the-art methods, achieving higher accuracy with significantly less computation, analyzing a data set with 1.3 million words and 44 thousand links in a few minutes.Comment: 11 pages, 4 figure
    corecore